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; between convection at two points separated by less than the integral scale
itself. This assumption is necessary to obtain convections of the integral
scale (which is a one-point function) at a single point and thus represents
the most general physical requirement for the very existenFe of closed
equations for the integral scales., The assumption which is mathematically
embodied by the moment expansion Of the correlation tensor ASection 1)
restricts the rigorous theory to early homogeneous flows. We shall see
(Section 2) that our theory is in satisfactory agreement with the
experimental evidence for nearly Ioomogeneous flows. We follow convention
in making the bold suggestion that the theory be applied outside the
rigorous limits of its derivationi for at least the reason that at the
present there seems to be no sound theoretical alternative to solving for
the full twopoint tensors dh,4 il when near-homogeneity fails.

'-4 The second major assumption that we find necessary for a rigorous
derivation of rate equations for the integral scales stems from a coupling
between the evolution of the Reynolds stress and other one-point
correlations to the evolution of the integral scale. The nature of this
coupling,--n our opinion, only-partially understood at present. To

* proceedve observe that we can obtain from the two-point correlations at
every spae point and at every instant of time, both the Reynolds stress
(by collapsing the two points to one), and the irt-eral scale (by a
suitable integration in relative separation)

In view of this fact, it appears natural to propose that the concepts
of second-order closure, which have been successfully developed over the
past decade, be extended from applying to one-point correlations to apply
generally to the two-point correlations. It is understood that the
simplest" proven equations are to be considered for the relevant models

until these are proven unsatisfactory. We shall see in what follows that
this assumption offers a valuable guide to obtaining rate equations for the
integral scale and allows us to incorporate in the generalized-theory all
the major successes of currently available second-order closure.

It may be worthwhile to point out that we do not derive the scale
equations from the Reynolds stress equations. Rather both equations follow
from an equation for the two-point correlation tensor.
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PREFACE

There is more than one way to look at any physical problem. In the

field of turbulence research, it has become fashionable to define almost any

unsteady flow in the wake of an unaccelerated body as turbulence. A lot of

these unsteady flows contain large-scale, coherent structures and, thus,

there has arisen a "large-scale eddy cult." The basis thesis of this group

is that turbulence should or (for the extremists) must be attacked by some

technique which identifies the turbulence with the interaction and decay of

such large-scale structures. A corollary of this position is that closure

methods do not or (for the extremists) cannot address themselves specifi-

cally to large-scale eddies and, therefore, are not really anything but

dull, unphysical, and temporary methods for dealing with turbulent flows.

The authors of this paper do not believe that these people really

understand the nature of closure calculations at the present time. Not only

have closure methods demonstrated the existence of large-scale eddies in two

cases (the roll eddies of the marine planetary boundary layer and unsteady

large eddies in the flow behind a rearward-facing step (see references 11

and 12 in the main body of this report)), but these eddies have been resolved

in all their gory deta-il. This can be accomplished when the closure equat-

ions are used in their elliptic, time-dependent form and the grid spacing is

fine enough. Why is this so? It is because the Euler equations (which

govern the formulation and a great deal of the behavior of large eddies) are

contained in the time-dependent, elliptic equations. Thus we submit that

closure techniques not only can describe large-scale eddies but must do so

if the time-dependent, elliptic forms of the equations are used and the grid

spacing is small enough to resolve these eddies.

One further point. The Karman vortex wake is an unsteady flow associa-

ted with an unaccelerated body. We do not prefer to think of it as a form

of structured turbulence (nor did those who first studied the phenomenon)

although, if one were a member of "the cult," this point of view might be

taken. The reason that we choose not to consider it as structured turu-

lence is that there is ample evidence of its existence in laminar flow.
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From the closure point of view, the Karuan wake is looked at as an unsteady

flow peculiar to the body that produces it. This unsteady flow interacts
with itself to decay either through laminar exchange and dissipation or
through turbulent exchange and dissipation, depending on the Reynolds number.

The research reported here is a description of our first attempts to make

a closure theory of turbulence that is compatible with the large-scale structures
that we must inevitably find when we run our closure codes in an elliptic

manner. The work reported is one completed step in this direction. As noted

later in the text, we do not consider this work complete. We sincerely regret

that we had to terminate this work before our attempt to construct a more general

closure formulation could be completed. While we consider many of the detailed
large-eddy studies to be outstanding, we also believe that elliptic, non-
steady, closure techniques will be the backbone of turbulence computations
that will be of use to the military for the next twenty years, and that closure

techniques that are compatible with this approach should and will be pursued.
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1. INTRODUCTION

Thinking of the integral scales of turbulence as moments of the

two-point correlation tensors generates a general approach to the dynamical

*' determination of these scales. The purpose of this paper is to demonstrate

the validity of this proposition and to develop a number of its

consequences.

In order to calculate the level of turbulent kinetic energy, q2 /2, the

separate levels in the "energy components," (u'2, va2 and w'2 ), as well as

the turbulent stresses (e.g., uv'), the second-order-closure approach has

been developed to a high degree over the last decade. To make calculations

.* of the turbulent fluctuations indicated above, it is necessary to provide

information on the behavior of the turbulence scales that have been

"* introduced in second-order models that represent turbulent transport,

isotropization, and dissipation. It is desirable to obtain local rate

equations for the turbulence scales because, for example, one of them

represents the size of typical energy-containing eddies and this size varies

considerably from point to point in a turbulent flow. A similar observation

applies to the size of the eddies that are mainly responsible for the
dissipation of the turbulence. We develop in this paper a technique to

determine local rate equations for the integral as well as the microscales

of turbulent flows. We follow and generalize the basic ideas introduced by

G. I. Taylor1 who focussed his attention on the important case of isotropic

turbulence. The normalized autocorrelation function f(r) of the component

of the velocity in the direction r with the same velocity component at a

distance r has schematically the form indicated in Figure 1. Here f(r) is

defined to be the normalized time (or space, or ensemble) average

fOr) = (x) .ur'x +r))-

The typical curve is not a Gaussian except when the turbulence is very weak

(e.g., in the final stages of decay of isotropic turbulence). It is

therefore necessary to allow for two distinct spat 4al scales n order to

9
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f(r)
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7,Figure 1. Geometrical interpretation of the two scales of turbulence,
~the dissipative scale, A,, and the average size of the energy

containing eddies, Lf"
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ly characterize turbulent flows, and this was indeed done by

te smaller scale ("microscale") is defined by the curvature

:he origin

2= lim [-f"(r)] > 0

r+o

shown to be characteristic of the eddies responsible for viscous

i. The longer scale ("integral scale") is defined by Taylor in

as to account for the non-Gaussian tail of f as the area under

', namely,

Lf = ffr) dr

0

iles degenerate into a single scale as f becomes Gaussian. The

between the two scales can also be inferred from the form of the

,rum of the turbulent field because the power spectrum is

easily related to the Fourier transform of f(r). One geometric

the two scales X and Lf is shown in Figure 1 where /2 X is the

f the parabola tangent to f at the origin with the r axis, and Lf

ructed that the hatched areas (denoted by A) are equal. We shall

ylor's definitions yield, when appropriately generalized,

which transform as tensors and are therefore meaningful in flows

general geometry. We shall then show that the scales satisfy

d dynamical equations which we shall derive from the

es equations for fluid flow.

pose a generalized second-order closure which makes the equations

-point correlation functions self-contained. Thus, for the

flocity correlation tensor Ri1 , we say that we have a

closure if we can write

11



2"J = Tij [RkI]

where T is a tensor functional of RIj. We shall restrict T considerably by

requiring integrals to appear only through the integral scale tensor Aij

which we define, following Rotta2, as a weighted moment of Rij

ij(XC) J Rij (ic , r)

The two variables xc and r are defined below. We observe that, for

isotropic turbulence

(is)
(is) Akk

Aij -- 6j 3

The normalization factor has been adopted so that, for isotropic turbulence

= Lf + 2Lg 2
A jAkk = -- 3 = 3 Lf

It is interesting to note that this choice of normalization leads to a

scalar scale A, which is 2/3 of the longitudinal integral scale and that the

scale now defined is approximately equal to that generally used in current

second-order-closure calculations. The basic reason for the definition

adopted above for (generalized) second-order closure can now be made clear.

The tensor Rij contains the information needed to obtain the kinematic

Reynolds stress

uu = lim Rij (x,y)

and also the scales that enter the modeled terms in the equation for u'u if

these are assumed to be related to the Aij Just introduced.

12



In order to derive local rate equations for Aij, we find it necessary

to generalize the standard integral methods to extract average information
from equations in many independent variables. The procedure that we
introduce is shown to coincide with the standard integral methods where

these are applicable. Our generalization is made necessary in order to
treat the two-point correlation tensors of the theory of turbulence because

these are convected independently at two distinct points. The use of the
moment expansion (which is necessary to obtain rate equations for scales at

a single point) restricts the ensuing theory to nearly homogeneous flows.
*: We show in the following that our theory is in satisfactory agreement with

the experiments on nearly homogeneous flows. We believe that our theory
(like the Chapman-Enskog theory of molecular transport) will give useful
information outside the limits of its rigorous derivation.

1.1 Equations for the Two-Point Correlations

We consider incompressible flows with constant density which may carry
*- a passive additive. We assume that the governing equations are the Navier-

Stokes equations

ui + aui + V 2u I  (1)
at Uk 8xi

the continuity equation

ui 2)
6xi

and the convection-diffusion equation

- + u1 6- = D Ve (3)o)t bx i

The notation adopted is that of cartesian tensors with the following
variables: the eulerian velocity is ui, a field function of the independent

variables x = (xi) and t; the kinematic pressure is denoted by p which is

13



the ratio of pressure to mass density; the passive additive is measured by

* e which represents, for example, the temperature. The two transport

coefficients are v, the kinematic viscosity, and 0, the diffusivity of the

passive additive. The Laplacian operator at the point x is written as 7

and it is defined by

2 U2 U2 U

1 2 3

We introduce the Reynolds decomposition of the dependent variables by

writing

Ui i + Ui (5)

p =p + P, (6)

* where the average can be understood as an ensemble average or as a space (or

time) average. In this latter case it is assumed that there is a marked

separation between the short (or small) scale of the turbulent fluctuations

* and the large (long) scale of the variation of mean quantities. The

averages are thereby always interchangeable with the space and time

derivatives. The transport coefficients are assumed constant. For any

arbitrary quantity A, we shall use interchangeably the overbar or the

bracket to denote the turbulent average. Thus

A S<A>(8

We now introduce the following two-point correlation tensors

RI,< 'x 9 ( ) 9

14



R1(x, .) <u(x) e'()> Ri  (101

R1j (x, = <U(X) u'(.)> RIj (11)

The order of indices and arguments is essential because the correlation

tensors are not symmetric under separate exchange of indices and of

positions. Note that when differentiating the argument can be omitted

without ambiguity when a function of a single argument is differentiated.

Note also that the Reynolds stress <uju> is the limit of Rjj as y + x.

Substituting the Reynolds decompositions, Eqs. (5) - (71), into the

- basic Eqs. (1) - (3) we obtain, for the momentum equation

-u _ u
' + -+ Uk + Uk--

at at k k

u g+ uk + _x1 + 2x1 v7 u(2

for the continuity equation:

Ui+ u.i 0 (13)
•xt  ax.

and for the convection-diffusion equation:

at at u xk k xk  (xk 1

We average the "total" Eqs. (12) through (14) and remember that the

averages are so defined as to commute with the space and time derivative.

The result in "mean convection" form is, for momentum

.1

i

* 15
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u ui + '' +v Vx2 Ui (15)
+ uk !- - uU

0 - xk  axi  6xk  1

For the continuity condition we have

0 o(16)
8X-

whicn was used to give the form exhibited for the right-hand side of Eq.

(15). For the passive additive we find

S + a"_ a<u. '> + D V2 " (17)
t uk x bxk

We remember Reynold's basic observation that turbulence gives effective

transport effects to the fluid in the form of a kinematic-stress tensor,

S<u u' uj>, and of a flux vector, <uu' W>, for the passive additive.

Subtracting the mean from the total equations, we obtain the starting

equations for the determination of the rate equations of the correlation

tensors given by Eqs. (9) through (11). These equations are the

fluctuation equations:

for momentum

aul _ u 8pui+ u +k- -ju <ujuj v2 ut (18)
-- + uk- + - - 1 u u + utxk 6xi  8 x k kk i V

for continuity

"J U

- =0 (19)Oxt

and for the fluctuations of the passive additive

16



4(20)___o + u ~~' _ -Uk -~ 8 [ ' - <u-,L'>J + X

The fluctuation equations have been put in the "mean convection" form in

-. order to emphasize that, for the fluctuations, the governing equations are
*I of the primitive form with two modifications: turbulent transport tensors,

S[u u u - <uu u;>] and [uu a' - <uu 9'>], respectively and also turbulent
* "production" -uu (i6 i/axu) and -uu ( i/axu), respectively.

We can now derive rate and continuity equations for Ri. Multiply the

aut(x)/at, Eq. (18), by uj(y) and the equation for ut(y)/at (derived from
Eq. 18) by ut(x). Then add and average. Using the definition, Eq. (11),

we obtain

Uij .) + ( X ) 1 Ri j + u t( ) + u t( x)

8t k-) 8 k + k yk I j I /

-u + ui R <uilx)u;lxlu!( L)>
[Ri "u l ()y- k x-' ii - 6 - -

_--[k -xk

+ 6 <u(~t~WY + v(V2 + V2ij (21)

We observe that the index i systematically accompanies the argument x and
that the index j systematically accompanies the argument y. The terms that
require modeling are those for which Rij does not appear explicitly. They

are the pressure velocity correlation and the triple velocity correlation.

It is of interest to note a first important difference between the familiar
equation for the Reynolds stress tensor <uu?> and Eq. (21) for the

two-point correlation tensor Rij. In the equation for the Reynolds stress,

the viscous term requires closure since this is given by

(( <uiuj )visc = lim (v2 + v2) Rj (X, (22)

which cannot be expressed, in general, in terms of uu alone. By contrast,

the viscous term in the equation for Rij does not require modeling.

17
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In addition to the momentum equation, Eq. (21), R j also satisfies two
continuity equations. Thus multiplying Eq. (19) by uly() we have

=i 0 
(3

'-.i ~u Cy) axi -o11
-,

which, when averaged, reads

\U: (y) -l - 0 (24)U. ,xi/

or

I _ x, y) = 0 (25)

Similarly

Ri J (1 x, y) =0 (26)

Equations (25) and (26) constitute a second and, in our view, very important
difference between the equation for the one-point Reynolds stress tensor and
the two-point Rij. In fact the stress uuiu"Ii does not satisfy a continuity
equation as is well known from Lighthill's approach to the problem of
determining the noise generated by turbulence. By contrast, Rjj satisfies
Eqs. (25) and (26) which will be seen to be stringent requirements on the
modeling of the Rtj rate equation.

By a reasoning entirely parallel to the one outlined for the derivation
of the rate equation for Rij we can obtain the rate equation for the flux
vector Rt of the passive additive. The result of the calculation is

il {)t + ~k(X) .- + (Yl) -Yk RI(x, 1 + e(l =
5 xk Y-)k ~

18
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S=R ' ik k k -k
yk bui

<uj"(X)u,(X) a' (Y)> - .- u'(x)uk(Y) e(Y)>

+ (v V2 + D V2) R (x, Y) (27)

The reader can convince himself that no simple notational convention

" unambigously suppresses the arguments of the flux for the production term;
hence the apparent pedantry in carrying the arguments of R1 explicitly.
This result also applies to the continuity equation for the flux which reads

a Rtl , Y1 = 0 (28)

We observed, when discussing Rij that the viscous term and the continuity

conditions make for substantial differences between the equation for uu-u
and for Rtj. The same concepts apply to Eqs. (27) and (28): 1) The
viscous term in the equation for R1 is automatically closed and, (ii) the

two-point flux equation must be compatible with the continuity requirements,

Eq. (28). The physical meaning of the continuity requirements on Rij and on
RIis best seen by differentiating Eq. (27) with respect to a/ax i and using

Eq. (28). We obtain

0 i +O a[k R(,, + 0 + el (I

- -<u(x)u(x)e'()> +0 1- bkLY) 1 (29)
bxibxk -bx t  bxk

Equation (29) rearranges to

b - bRk(xL) 62

Vj <p'(x)e'(y)> - -2 _u(X)ui(x)e() (30)Oxk  8xi bxibxk <~xull > 10

which can be compared with the familiar Poisson equation for the pressure

19



fluctuations

172p- --2 -!a- M a4 J(1x bXj a xj aXj 8xi axjJXj

obtained from the momentum equation for fluctuations, Eq. (18), by using the

incompressibility of velocity fluctuation, Eq. (19). In fact, Eq. (31)

multiplied by 0'(y) and averaged yields Eq. (30). An analogous reasoning

applies to Rij. In this case using Eq. (21) together with the continuity

condition Eq. (25) gives

v2 <p'(x)uj()> -2 < L(x)u'(x)uj())> (32)

This equation can also be obtained by multiplying Eq. (31) by uj(y) and

averaging. We thus see that Eqs. (30) and (32) contain essential

information on the long-range properties of the pressure fluctuations as

given in detail by the Poisson equation (31). We believe that a model for

Rtj that successfully incorporates Eqs. (30) and (31) would help clarify the

structural as well as spectral properties of turbulent flows.

We complete this subsection by obtaining the rate equation for the

temperature autocorrelation function R = <0'(x)e'(_)> as defined in Eq.

(10). We multiply the equation for ae'(x)/bt by 9'(y), add to it the

equation for ae'(.)/t multiplied by e'(x) and add. The result is the

equation

O + [kx) - + Uk(.)-A R - klX,y) + Rkl,x)
- uXk [Yk - Xk J

- k( ,-(x) e' (x)e'()>
8k aXk ON -

S- <u"(X) e (x) e' ()>

ayk

+ D (V + , )R (33)

20
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We ask patience for calling attention again to the arguments of the

two-point flux vector. In parallel with RIj and Rj, and by contrast with

the equation for the one-point temperature variance, there is no need to
model the viscous term in the two-point temperature correlation equation.

No continuity requirement arises for R since the velocity does not enter its

*: definition.

In summary, the basic equations for the correlation tensors and their
continuity conditions are given by Eqs. (21), (25), and (26) for Rip, Eqs.

(27) and (28) for Ri and Eq. (33) for R.

We consider now the limit process that makes the two points of the

correlation function collapse to a single point.

For this purpose we introduce a convenient coordinate system. The

centroid vector xc and the relative position vector r are defined by

z (x + y) (34)1c 2 -_

r= y- x (35)

These equations are inverted by

1 1

Ss c - ., y" *c +  r- (36)

The geometry of the transformation is shown in Figure 2. With these

coordinates the collapse of the two distinct points x and y can be
accomplished by taking the limit r + 0 holding xc fixed; thus the two

points x and y collapse to their centroid. To express the derivatives that
appear in Eqs. (21), (27), and (33) for the correlation tensors and the

continuity equations, (25), (26) and (28), we make use of the chain rules

-A-. I .a a(37)
axi  2 bxci brI
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IX

Figure 2. Geometry of centroid and relative position vectors.
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(38)
& 1 2 bxci bri

We note that for functions, F(x) of x only, i.e., functions that are

independent of y, we have

aF(x)_ F x -
-=i  = - .Xc r" (39)

1x oci (C 2-

, Similarly, for functions G(y), which are independent of x, we have

yi  6 GO X + (40)

To illustrate the collapse process, we consider the divergence of the triple
velocity correlation which has two terms in the Rij equation and but a

single term in the equation for <ujuj>. We note first that the relation

that holds in the collapse limit as defined above for the Reynolds tensor is

<u(!c)ut( c)> = lim Rij " r, c + I r (41)
r+O

Further, the turbulent kinetic energy is defined as q2/2 where

q2(xc) = <uj(Xc)uj( c)> (42)

The two terms in Eq. (21) that contain triple velocity correlations are:

Tij(x,) <u(x) u() u(y)> (43)Tii (k ) yx

Introducing centroid and relative variables and using continuity of velocity

fluctuations we have

T "" r, c +-2
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-* - 12fl u-c~.w-.-; c -n .2

Uk " Xc

Su,(x n) U'(' + 1 )EXk U + (44)

We can now readily compute the limit as r . 0 . Thus

Mim T i n' -- r,-c + I"

r-oO
=T. (x x)

K[~ -ut(x) u (x ) uj( >+ ( x) u (xc)r -ut( 91
([OXck I-C - c / I L ck

-k ) U i(x ) UjX (45)

Applying the limit r + 0 to Eq. (21), we find the well-known equation for

the Reynolas stress tensor

it U0u1 + Uk-ck 1 _ui +  ul)i + u Xj

U~Ujuj +u +UkiWruj

- - UU i v<Uj V2 uj> + <uj V2 Ut> (46)c k +

where all correlations are evaluated at the centroid vector. Equation (45)

is equivalent to the second term in the right-hand side of Eq. (46).

Application of the collapse process to the continuity equation, Eq.

(25), gives

•~! 2 j 8 Rtj - r, xc + (- 1472
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ns the fact that the Reynolds stress does not fulfill a simple

)ndition.

:e that the two identities commonly exploited to introduce the
"tendency towards isotropy" and of "turbulent dissipation" have

jes for the relevant two-point correlations.

pressure gradient velocity correlation in Eq. 45, we have the

identity

S <p -/1c--\ (48)
iXci ( c

. obtain

- <p'u' > + <P'U ("pressure diffusion")

3 aXcj 1

K xcj -ci)/ ("tendency towards isotropy") (49)

t term is traceless as a consequeice of continuity. For the

I pressure gradient-velocity correlations in Eq. (21) we can

alogous decomposition, namely,

+ (u ( x

L <p'(x) () >(Y) ("two-point pressure

c uj() aXcj )Y uI diffusion")
/ bu ( / bui(.] ("two-point tendency toward

Px'(x) () xc J  isotropy")

itlon is justified by the fact that each of the two terms in
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square brackets in Eq. (50) reduces to the corresponding term in Eq. (49).

We have, in fact, for the two-point tendency towards isotropy

(1) ( )T - '(x + -+X- T'
- a Xcj

=- (Pc 'r)_a_ '(

In the limit as r + 0 this becomes

(2___ + p'(x) au;(2 c (51)

(c Xci Xcj

(1)

Furthermore we note that the two-point tendency Tij)(x,y) is trace free

(1)
Tkk (x, y) = 0 (52)

The viscous term in the Reynolds stress equation is often rearranged

using as an identity Leibintz's rule

2 2 )> + <(V2u )U > + 2 (53)

Vc uiuj = cj) +xck Xck/

which can be used to rewrite the viscous term in Eq. (46) as

v <uj v2uI> + <uj vj ut>

vV <ujuj> (viscous "diffusion" of the Reynolds stress)

- 2 v uj . ("turbulent dissipation") (54)

Ix Xck Z~w,
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In good analogy, we can write, for the two-point viscous term in Eq. (21):

(V2 vy) Ruj = vu(x) V2 uj(y)> + V <VU()U~)

= v V2 R (viscous "diffusion" of Rij)

- 2vo\ (- uO)\ (two-point turbulent "dissipation")
() k 8xck /(55)

The identification is justified here as in the case of pressure-gradient-

velocity correlations on the ground that we have term by term collapse of

Eq. (55) to Eq. (54).

Before introducing the models adopted for our generalized second-order

closure, we observe that the collapse of the two points in Eq. 27 for Ri
gives the familiar rate equation for the one-point flux <ute'>

* -- (u'> k ~-<"'-'> + -a-- 88 = o'* ue' i
t uc X = uu +Xck u Xck

_Lc <u;uj e'> + V < 'V2Uj> + D <ut v2 '> (56)
Xck c

Sl! ilarly Eq. (33) for R becomes in the limit r + 0:

Ot uk Xck

ck ck/

We note that when the Prandtl number (v/D) differs from unity, the molecular

transport terms in the flux equation play a different role than those in the

Reynolds stress and temperature variance equations.
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* 1.2 Model Equations for the Correlation Tensors

In order to achieve our goal of obtaining dynamical equations for the
integral scales associated with the correlation tensors, we must close these

* equations in a suitable form. The path that appears most natural is that of
* requiring that the closed equations contain only the same two-point

correlation tensors whose integral scales we seek to determine. This point
of view is made plausible by the successes of second-order-closure modeling
in that the modeled equations contain only the one-point correlations in
question and scales required to give correct dimensionality to the terms
that require modeling. If these scales are interpreted as moments of the
two-point correlations, no quantity extraneous to the two-point correlations

* needs to be introduced.

To specify the two-point models more precisely, we adopt two sets of

rules. The first set of four is a formalization of the notion of invariant
* modeling and thus invokes symmetry laws whose validity is hardly in

question; the second set summnarizes a number of sound dynamical rules whose
* validity is known to have limitations. The second set of rules is taken

merely as a flexible guideline, albeit a very useful one. The first set of

- rules, the kinematical rules, is as follows:

(1) The model equations are invariant under space rotations, space

translations and time translations. These properties are of course

true of the unmodeled Eqs. (21), (27), and (33) for Rip. Rj anid R. We
thus require that the model for a given expression have the same tensor
rank and symmetries both in tensor indices and position labels as the
expression model ed.

(2) The model equations are invariant under Galilean transformations which

is, of course, true of the unmodeled equations.

*(3) The modeled equations have the same scaling laws as the unmodeled

1 equations; that is, the model for an expression is to have the same
dimensions as the modeled expression.

-(4) The modeled expression satisfies the same continuity properties (if

any) that are satisfied by the term modeled.
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The second set of rules that we adopt intends to capture some of the

i* broad dynamical features of turbulent flows extracted by many workers with

much labor over the last fifty years. They are:

(1') The triple correlations represent the diffusive character of turbulent

flows, an idea strongly advocated by G. I. Taylor 4 since his early work

on turbulence. There are likely exceptions to this rule.

(2') The dissipation occurs at the smaller scale end of the spectrum which

is predominantly isotropic. This idea embodies the Kolmogoroff

philosophy and, like (1'), this rule has likely exceptions.

(3') The main effect of pressure fluctuations for free flows is to

isotropize the turbulence, the Rotta-Batchelor5'6 concept. We do

expect strong exceptions to this rule, for example in the presence of a

wall or of strong stratification.

The rules (1'), (2') and (3') have proven very fruitful in second-order

closure of one-point correlations. We assume them applicable to the

two-point models that we study here.

We have found it very useful to adopt an additional rule, namely that

the two-point models should collapse to a standard one-point model when r +

0. We shall adhere to this correspondence principle and adopt as standard

the second-order modeling of Donaldson and his coworkers (see, for example,

Ref. 7).

We consider four main models:

(a) Velocity diffusion. We choose

--- <uI(x) uA(x) uP()> + -A- <u(x) uO() ul(y)>
bXk -Yk

-- Do (x: r) S + Oil (2, )
bxck k __ aXcl ~xci (xc(58)

While this model slightly generalizes previous models by allowing for

anisotropic diffusion, we shall be mainly interested in the simple special

case
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14jjt q2!c) A (.!c) he (59)

o = 0 (60)

* where A is to be a moment of Rtj and q2 = <ujuj>. The quantity Lij(_C , r)

is required to have the property

L~j 1 O) z 0 (61)

That is to say, L1 j does not contribute to the evolution of the Reynolds

stress tensor. Thought of in terms of the theoretical work of the 1940's

and 1950's, the term L is associated with the cascading of large eddies

into small ones. In terms of more recent work where both "merging" of

eddies (e.g., in the Brown-Roschko experiments) and cascading can occur, it

seems preferable to think of this quantity in terms of eddy-size

rearrangement. We shall adopt a simple linear behavior for L in terms of

Rij. Thus

Ljj = V [Ruj - Silj (62)

where V is a size rearrangement parameter. Sij is required to satisfy

Sj ~r-'0 ) - u uj' (63)

to guarantee that Lij does not contribute to the evolution of the Reynolds

stress and to have vanishing leading moment In order that Ljj give a growing

contribution to the integral scale. This is required by the experiments on

grid turbulence as we shall see in Section 2.

(b) Pressure diffusion. We choose:
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" IW (<p(lx)Uj(ly)> + a <utlx)p'ly)> - D .t
(64)

We shall be mainly interested in the special case D3  0 which seems

adequate at present mainly because pressure and velocity diffusion effects

are very difficult to separate

(c) Tendency-towards-isotropy. We choose:

'(x) a + P'(Y) -, - 61j + Tij (65)
- ci cj Aj

The first two terms in the square bracket are an obvious generalization of

the standard Rotta model for the Reynolds stress rate. The tendency

correction Tjj is required to have vanishing leading moment so that the

entire term gives a tendency to isotropy for the scale tensor and

furthermore T ij must insure that continuity is fulfilled for the Rtj model.

It may be shown that for isotropic turbulence Tjj is uniquely determined,

and it is such as to make the pressure-velocity correlation vector vanish as

appropriate to this case. A complete determination of Tij for an arbitrary

homogeneous turbulence is not available at present.

(d) Turbulent dissipation. Utilizing our correspondence principle and the

guiding rule (2'), we choose (for high Reynolds number)

bui (x) bu ) M oj R(1--- - 2b 61j a (66)
bXck OXck

where b = 1/8 (see Ref. 7). This model will be seen in Section 2 to be

adequate for near-homogeneous shear turbulence at high (turbulent) Reynolds

number.
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1.3 Moment Expansion

We propose below a "moment" expansion for functions which are sharply
peaked about a definite point which for mathematical discussion can be
chosen to be the origin. The terminology is justified on intuitive grounds
as well as on the grounds that it can be proven that if a charge density is
moment expanded, then the corresponding expansion of the electro-static

potential is the conventional multipole expansion. It will be clear that it
is necessary to moment expand the two-point tensors if one-point scale
equations are to hold. We observe that for any function fix) of the vector
variable x, the Dirac identity holds:

fi.) :fs6(x - x') f (x') dx' (67)

6 is even in its vector argument and by Schwartz's theory it can be Taylor
expanded. According to Schwartz distribution theory, the convergence of the
following expressions is understood as convergence in measure. We can thus
write the two expansions:

.8 1 . 82

6(x'- X_) 6(x) - x 6(x) + 1 xjxj -2 6(x) + ... (68)
_ i 2~ o&(x) 8X8x

and

6ix- x') = 6(x' - x)

8(x') - xi - 6(xj) + xx j  x2 6(x') + ... (69)

Substitution of Eq. (68) into (67) yields

f (x)- 6(x)f,(x') dx' - 8 f6(x f x')dX' +... (70)

which we call the moment expansion of f. Substitution of Eq. (69) into

Eq. (67) yields, on the other hand,
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f(x) " f(O) - xI  + (71)

which is the standard Taylor expansion of f(x). The moment expansion, Eq.

(70), is suitable for the highly peaked function while the Taylor expansion,

Eq. (71), is suited to the opposite regime of slowly varying functions.

A remarkable and useful duality can be proven for the Fourier

transformation ?(k):

?(k) = fe i k ' x  f(x) dx (72)

Insertion of Eq. (70) into Eq. (72) yields

?k =fe (x)fW) dx' - X f(x')dx' + dx
.. . x 1 - - "'" f

= Jf(x')dx' +iki Jxt f(x')dx' +

= (0) + ki ( ) ... (73)

where we have used

NO) ff(x') dx' (74)

f- - x! fx) dx' (75)

which can be deduced from Eq. (72).

Insertion of Eq. (71) into Eq. (72) on the other hand yields

f(k(0)- (e ) f dx =
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,:: f' (k) /__ ,(2x)3 6(k) f(O) + 1(203 - 1 +

- 6(k) €') dk 6 k'; (k') dk + ... (76)

where we have used

f(O) = f(u) dk'/(2 3  (77)

-I (kj ?(k') dk'/(2%)3  (78)
\xj x=O J

which follow easily from the inverse of Eq. (72).

S We may now expand the tensors Rij Ri, and R in terms of their moments.

From dimensional considerations the moments necessarily define lengths. A

simple choice was suggested by Rotta (Ref. 2) for the velocity correlation

tensor. This choice was alluded to earlier in this paper and is

(2) Ri1(Xc' r) (2)
Mi ij = J -41- = Mjj (xc) (79)

(2)
The identification (suggested by Rotta) of the lengths contained in Mij is

(2) q 2 (.Xc)
MU = Aj(.c)

where, of course

q2(xc) - Lim Rkk(Xc, () (81)

An alternative identification, convenient for certain purposes (i.e., the

homogeneous flows of Section 2), is
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L jU 7 L (82)

which has the same dimensionality but a somewhat different tensor character

than the Rotta version, Eq. (80). We adopt in analogy with Eq. (78)

(1) rr
Mi  ( : = r 4r z  (83)

and

(0) 1. R(xc, r) (84)
M ( c = Jdr- .- -- 84

The analogues of the identification, Eq. (80), for the velocity scale

may be chosen to be

(1) 1q(,) (e,2) 1 /2 (1) (x ) (85)M1  (xc)= i  ()8)

and

(0) V (0)M( 0 (c) = 0 - ( 07 (xC (86)

The leading term in the moment expansion, Eq. (70), can then be taken to be

(2)
R= Mj ( ) 6(r) (87)

where we have introduced the one-dimensional Dirac function 6(r) (r is

defined as the magnitude of the vector r, r r). The main property of

6(r), for the present purposes, is its relation to 6(r). This is given by

6(r) - 0(r) (88)
-- 4Rr 2

We also introduce the moment expansion for the correlation R1 and R as
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* foll1ows

Ri(xc, r) =x 6)(8r) C9

* and

R(xc, M) (x) 6(r) (90)

*In order to obtain the rate equations for the moments, we require three

steps which we are now in a position to take:

(a) Develop a closure model for the Rjj equation so that when y -l-x

we obtain a standard equation for uij. This is a useful correspondence

-criterion designed to allow us to incorporate what has already been gained

* from second-order closure. Of course, what is said for Rij is taken to

apply to Riand to R as well.

Mb Substitute into the closed equations for the two-point correlation

* tensors, Ru., R1 and R, their moment expansions and retain the leading term

to define a first approximation to the behavior of these quantities. Wie

observe that the moment expansion appears here as an intermediate step,

* prior to integration over the variable r with respect to which we wish to

average. We return to this essential point below (c).

(c) We integrate over all r the first-order expanded model equations

* for the correlation tensors. This step of integration (or averaging) is

* taken in many known moment procedures without the intermediate step Mb. We

* return below to this point to clarify our position.

At this Juncture we believe that two main observations are worth

* making. With respect to (a), we observe that in order to have a closed set

of partial differential equations which are supplemented only by boundary

and initial conditions we must obtain closure at the level of the two-point

correlation tensors. This is true provided we identify the spatial scales
introduced in the (one-point) second-order closure equations as integral

scales associated with two-point correlation functions when we utilize the
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correspondence principle expressed in (a). We are cognizant that such a
* procedure is a strong assumption. Hence, our label: "generalized

* second-order closure."

The second point that we wish to make refers to the requirement of an
intermediate step, the moment expansion in (b), prior to the development of
the moment equations. This step is the least orthodox in our development,
and we have repeatedly attempted to bypass it. We believe that the moment
expansion is necessary for the development of rate equations for the scales.
Reconsider briefly, as a prototype, the standard procedure, due to Maxwell,

utilized in obtaining moment equations from the Boltzmann equations (for the
single-particle velocity distribution function in a gas) on the way to

* deriving the transport coefficients for the Navier-Stokes equations. We
consider here velocity space moments of the quantity

6f - f(v t) + v-vf - J~f,f3 (91)
at _

where J is the collision integral, bilinear in f. That is, we multiply

Eq. (91.) by powers of v and then integrate over all velocity space. We

observe that: Mi the convection term is linear in the averaged variable v
and hence raises the moment index by precisely one, and (ii) the first five

moments of J vanish as a consequence of conservation of mass, momentum and
kinetic energy. An orderly hierarchy of moments ensues, with the moment

* equations for momentum and for energy containing exactly one higher moment
* each. The closure of these equations and hence the calculation of these two
* higher moments is then the task of the Chapman-Enskog expansion. Feature

M(i)s characteristic of all the moment procedures known to the writers, and

* it is essential for the implementation of Maxwell's approach. The absence
* of this feature in the equations for the correlation tensors of turbulent
* fluids is what forces our intermediate step, the moment expansion. For the

correlation tensors, convection occurs independently at two distinct points.

* By contrast, the integral scales evolve at one (and each) point of space
since they are functions of the single variable x. We submit that the

* reduction of the two points x and y to the single cannot be accomplished

37



without our moment expansion, Eq. (70).

The reader can rather easily convince himself, in the cases where the

intermediate step (b) of carrying out the moment expansion is not necessary

(or in the case described above of Maxwell moments of the Boltzmann
* equation), that the explicit use of step (b) causes no deviations at all

from the standard procedures.

When we carry out the program contained in (a), (b) and (c) above, we

obtain the sought-after rate equations for the moments (at the single point

* x c). We illustrate the procedure with the simplest term, the partial time

derivative of Ri. Application of the procedure to other terms in the

two-point correlation equation is tedious but not difficult.

(a) Consider the relevant term in the modeled equation. The term is

(3)
T Rt ic, r) (92)

*For this term, of course, no modeling was necessary.

(b) Insert in the term (modeled or not) the moment expansion and

retain the leading term

(3) 12 (2)~
Tj [i(2 c t) 6(r)] 6 (r) -gij (93)

where we have used Eq. (87). It may not be amiss to remark that a full
series expansion can be considered even though for simplicity we focus here

on the leading term.

(c) Integrate the quantity obtained in (b) over all space of relative

position r using a weight appropriate to the generalized moment considered.

*Using the Rotta moment defined in Eq. (79), we consider

J r (3) C r M()~ (2)( j
4nr7:2 ii =n at Mj( ti -
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= (2) dr
Mij (-M( t) dr 6(r)

at f =C4
_L M (2) (.Ct r

- -n- Mi. ()t)d 6r

LM(2 ( ,t) (94)at i

used the basic property, Eq. (88), of 6(r) and the familiar

J dr 6(r) = 1 (95)

see that implementing steps (a), (b) and (c) yields rate
the moments.

general formula can be given for averaging with a function A

rariable which can be the component of a tensor

Alx)l X_+ A( ) J

A a M (2) (I:) M (2) ( C) 6A3 13 3 (96)

der as a complete example the following model equations in

mplicity, diffusion terms have been omitted. We thus consider

neous flows at high turbulent Reynolds number. For the

Dcity correlation tensor we assume

(Rik7 + u )Rkj + v [R t j -Sij +
y Oyk  

3xk  A
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R R~c R
R [Ri - am T 2b R ij a (97)

A i 6j 34ii1 A6l 3

For the two-point flux of the passive additive we assume

DR1 - R -- - ui Rk + v' R R. - Si3 - A Z [Ri - Ti]  (98)

k k 5Xk A 1 A

and for the two-point autocorrelation function of the passive additive

(e.g., temperature autocorrelation), we assume

DR + Ri 2bs IR (99)
Dt LRk6yk+ bxk k] A

where the two-point material derivative D/Dt is defined by

(5)t Tt- + U CX) -L+ (Y) (100)

point k

The model parameters v, v', A, b and s will be discussed in Section 2. In

addition to Eqs. (97), (98) and (99), we consider the requirements of

continuity:

-- =0 (101)
axi

aRij 0 (102)

8yj

-= 0 (103)

ax i

We then obtain, from the two-point models given, the following one-point
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correlation equations by taking the limit r + 0. The kinematic Reynolds

stress <uju> satisfies

I. Fq 21
= u j. - - _ _

Duu + qT ui A 6 .a. 62bq
Dt ac uikxkjA [uiu 13 3 133A

(104)

The flux of passive additive satisfies

Du E)' - u*
Dt U- - - A -q ute (105)

txck Xck

and finally the temperature variance satisfies

D - 2 1 2bs R (106)
Dt 6xck A

* We have used, in the one-point correlation equations, Eqs. (104), (105) and

(106), the one-point material derivative

(.)one- = + uk (x ) x (107)

point

v omitting the distinction between Eqs. (100) and (107) since no confusion

can arise. The equations (104) through (106) are those of our standard

*" model as given by Lewellen7

When we apply to the two-point equations, (97), (98), and (99), the

moment expansion and average procedure specified above, we obtain the moment

* equations. A tensor scale is contained in the velocity moment equation

D (2) (2) bu. bui (2) (2)
iMj =-Mik a-ck -~ck Mkj + v A Mij

(2) 8i (2)]
_ [M -i Mkk - 2bq3 uij (108)
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A vector scale is determined by the moment of the flux which satisfies

Dt M - Mlk ck Mk M c (A + v') M (109)

And finally the temperature scale is determined by

0 (0) (1) (0)o
M = - 2 Mk  2bs be M (110)

Dt Xck A

We shall see in Section 2 that, accepting the identification of the scales

given in Eq. (80), we obtain good agreement with experiments on near-

homogeneous turbulent shear flows.
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2. NEARLY HOMOGENEOUS FLOWS

The goal of this section is to demonstrate that the theory of turbulent

scales proposed in the previous section is in considerable agreement with

the experiments carried out at JHU/APL on nearly homogeneous flows.

- To introduce our discussion of nearly homogeneous flows, we observe

some general features of the scale equations that we have derived and then

will exhibit exact solutions for theoretically homogeneous flows. Adopting

our definition of the tensor integral scale for velocity components that we

discussed in the previous section, namely,

T Ar) (111)

(2)
the moment equation for M(2) can then be written as (we drop the subscript
c)

- '2~ : _2/ +u u
2Uk 2 ijij -xk xi

L ( 2  i+vI _q 2

- A - A - 2b (112)

*that enters the modeled terms with

A A (113)3 Akk

We can contract Eq. (112) and subtract the rate of q2 to obtain a local

* rate equation for A . This reads
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-- s- b-- Sc- - =- -2^ - - -. . . - -.--

AA + ! - (A j u .a
atk 3J ax.i

2

+( - (qA)- (qA) VA [ (qA) 2
~q)axk axkk L7ax aXk

+ v'q (114)
It is of interest that the coefficient of ai/ax. in the first term on the

right-hand side of Eq. (114) is not proportional to iui . Such as assump-
tion has been made repeatedly in the universal "scalar scale" models. A
simple approximation, that we call the a approximation, can be deduced from

the assumption

Aij = A[6ij + 3-iJ (115)13 [13 \q')

Substituting the ansatz Eq. (115) into Eq. (114), the "production term"
simplifies, and we find

a kA = -2 (a Aa
k q 3

, v a (vA' 3 a qA) qa
~q x k aJ \ /axk L73k x

+ v'q (116)

Furthermore, we can obtain an equation for a by substituting the ansatz

Eq. (115) into (112), subtracting the rate of change of A given by Eq.
(116) and contracting the resulting second-rank tensor equation by the
deviator uu - (1/3)6q 2  and solving for ao/at The resulting a

equation is
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+u 2 q4 (Uug'u> a~
i +ak 3 n

' u'.<u u!> -__
,I Vuu> 1 J 3

/ a (qA)L-(A)l +( a (q) A-] (117)
+U xk L 'Xk j A Bk

The absence of nondiffusive equilibrium for A as given in Eq. (116)

is by no means accidental. It is, in fact, essential for a good match of

the model parameters to the nearly homogeneous flow data (both for simple

. grid and for near-homogeneous shears). We note from the a equation, as

pointed out by Donaldson and Sandri8 , that flows with different turbulent

structure have a different coefficient (a/3) - 1 in front of the A scale

"production" term. Thus a scalar scale equation which does not take into

* account the turbulent structure cannot be valid. Furthermore, we can prove

that
o4

F < uiu><u!u > -9 > 0 (118)
I3 J 1 3

quite generally, with

q 2 > (119)

Therefore, the only non-negative stationary solution of Eq. (117) which is

nondiffusive is a = 3 . We shall see below that all the solutions for homo-

geneous shear asymptote to a solution that can be exhibited exactly and for
which a = 3 It is interesting that the value of a used in practice

(in the universal scalar scale modeling) is a = 2.48 . As pointed out

-* again by Donaldson and Sandri8 , it is attractive to conjecture that diffusion

* always lowers the value of a from its asymptotic value for homogeneous

flows and that the different behavior of two-dimensional and axisymmetric

jets can be attributed to the substantial differences in the diffusion terms

* in the two geometries.

We now present two exact solutions for ideally homogeneous shears. We

start with some notation.
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The centroid vector and mean velocity vector are taken to have

components

(x,y,z), (U(y),0,0)

with ay= U= constant. The relevant components of the Reynolds stress

equations are obtained from Eq. (46). We drop primes on the fluctuations and

give a form useful for numerical integration in which U and A11  are

calculated from

U, q (120)
=q U2  -u3

Al1 = 3A - A22 - A33  (121)

The other relevant components of the stress and energy equations are

-T 2b -1 _ u (122)
3: u2 A A2

.7T 1(1 2b) 2u (1 2b)(123)t3 3 A A 3

;- U 2 = -u U - u (124)at 1 2 2A 1 2

u u 21.a l2 , (125)
q A

For the tensor scale components, we obtain, using Eq. (112),

a" A A 2b)q (126)
at 22 T 22 +(12

a = " -A33 + (1- 2b)q (127)
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A 4A1  - U'A (128)at 1A2 T . 12 2

= q 237 U A § 12U' + v'q (129)

%q

where 1 - 2 + (I - 2b - v') (130)
q

2.1 Solution of the Shearless Equations

Setting U' = 0 , we see that equations for q and A decouple from

the tensor components. Introducing the deviators

dij = uiu - ijq2  (131)

D = A 6ijA (132)
.) ii 3 k

and the time

= A (133)
q

we have the set

- q :" q  ' A A (134)

T at T

a d d D 1- 2b -v' D (135)
at ij Ti ' at ij T ij

T = b + v (136)at
Integrating Eq. (136) as

= (b+v')(t-t o) + -- (137)0 qo0

we see that q , A , dij and Di are suitable powers of (q /T )t ; for
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example,

' , -b/ (b+v')

q = qo b + v') ! (t - to) + 1  (138)

d../ (139)],d.j di0 [(b + v' (t - to) + 1 (139)

d [ vt-v'/(b+v')

A A  (b + v') ! (t - t ) + I (140)

A good fit to experimental data on the decay of turbulent energy and

the growth of eddy size for grid turbulence is obtained if one chooses

b -1
8- (141)

v' = 0.075

We then see that for large times

2 2 0 t -5/4
q2  q 2 ! (142)

d d l 2. 2 t (143)

which shows that the deviator decays with a power about four times larger

than the energy.

From the solutions given above, we can verify that statistics are pre-

served by the model equations if the model parameters satisfy certain bounds.

We first show that the two tensors uiu j  and A.. are positive definite

from their definitions. Consider an arbitrary (constant) Ai then,

Aiu---A j = (u. A) >0 (144)

the equality sign holding for A 0 only. Thus, uiu- is a positive

definite tensor.
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*.; From the definition of the scale tensor given by Eq. (111), using

*~. Fourier transform on R
ij

2R.
Aij 8rk= a dt (145)

f 13 47rrJ

where the power spectrum tensor Oij is positive definite by Khiutchine's

theorem. Thus,

£AiAijA = AiiA j >0 (146)
3 13 Birk 13

Thus, Aij is positive definite because q2  is positive as a consequence
of Eq. (144).

Using the solution (141) and an analogous solution for- Aij , we find

/ q "1/(b+v')

uiu(t) -- uiu (O) A 0 ]o

[(q \-2b/(b+v') (-(bv)

I t) = AiA(O)

o -/(b+v') (°T " 12bv ')/ (b+v' )

(148)

We now multiply Eq. (147) by A.A. when A. is an arbitrary vector, and

13 1j0L A

find

(148)

We. no multipy Eq. (17 by A . A whe A is anabtay etr n

'"' " ' " """ " " "" ' im um ,n"findn a, " ' ' ' i ' ' ' " "- -"" - " '" ' :



- Aiuu.(t)A = -u)7(0) T)

1 3

A2  q) -2b/(b+v) q) 1/(b+v' (A! 2 [TOT !oo T (149)
T'- oo Ao

From (137) we see that

T > 1 (b + v' >0) (150)
0

Sufficient for the left-hand side of Eq. (149) to be positive is

q -2b/(b+v') o 1

!o T -- o_ T (151)

which requires, using Eq. (150)

2b < 1 (152)

A similar analysis applies to Aij ; however, no further restrictions on the
i"3

parameters are found.

2.2 An Asymptotic Solution for the Equations with Shear

To obtain a solution of the equations with shear, we let

qV ault AL alltq= V eaU't A =L eaUt

W e2aU't AI3 = L eaUt

e2aUt L au't

ui: u2 W 2 e AaU't

u = A22  2 (153)
u u-2 = W3 e2 a U ' t  A L3 e a U ' t

-- A33'

.T 2 = 4 A I12  = L a U lt
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Substituting these forms into the differential equations,

we find that the exponentials cancel and that an algebraic set of equations

for the amplitudes is obtained. It is possible, with some algebra, to

solve the amplitude equations explicitly in terms of the parameters b and

v The energy components are

1 + 6v' + 4b 0.5652 (154)

q 3(1 + 2v')

2 - - -b 1- 0.2174 (155)

q q2  3 1 + 2v'

The scale components are

A11  1 + 6v' + 4b =1.696 (156)

1 + 2v'

A22  A33  1 - 2b

A A I+ 2v' 0.652 (157)

We see that

A11 _ 1 1 + 6v' + 4b = 2.60 (158)
A22  _- 1- 2b

u2

The off-diagonal components are

Br - u- i / I -2 b)(b + ')

q 2  1 + 2v' (3 0.194 (159)

A12 _ 1 2v' ( - 2b)(b + v') = -0.194 (160)

The Corrsin parameter is
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Co 1= = 0.55 (161)
S- 1u- 2 + 4b +6v'

1 2

The ratio of the two times is

=UA 1 + 2v' 3(b + v') = 0.972 (162)

and the growth rate, a, is

v I_ 1 1 -2ba v 1 + 2v' /3(b + v') = 0.073 (163)

We notice two additional interesting parameters:

U1
12 -Br = b + v' = 0.20 (164)
q

A ij q2  3

In terms of the a parameter, Eq. (165) corresponds exactly to the value

a = 3 (166)

As remarked above, a = 2.48 has given satisfactory results on a number of

flows. Also note that for this coupled, asymptotic, convective solution,

the ratios <ui uY /q2 , q/AU' are modified from those of the equilibrium

solution with no diffusion (the superequilibrium introduced by Donaldson).
9

For these solutions, we have (using Eq. (46)),

1 0.50 (167)
q

<vv> = <ww> 1- 2b 0.25 (168)7-2 --_ 3 -02 1
q q:<u> :/-2b =_ .7

(uV Kb -b 0 .177 (169)

q23
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q -2b = 2 (17C)
A(PU/9y) 3b

now appropriate that we consider the agreement between these

results just obtained and experimental measurements. The meas-

will make use of are those of Harris, Graham and Corrsin (Ref.10).

re is Figure 3 from Reference 10. It shows the growth in u2>

<u 3  in a constant shear flow. For these measurements, Uc

/sec, U' = aU/ay = 48 sec -1  and h = 30.48 cm. Also shown in

is the behavior of the Corrsin number

- <u 1u 2>//Kuiu> <u2

pect, after an initial transient, that the flow adjusts to an

solution with certain parameters constant, we plot faired results

3 in semi-logarithmic form in Figure 4. It is apparent from

at an exponential solution has been reached at an x/h of approx-

We note that the growth rates in terms of x/h may be written

Ku 2> <u K 2
2> u 2> e(2a x/h (171)

re we have indicated the ac's that best fit each curve. An

these values gives ac = 0.087 or, let us say, ac = 0.09 . To

se results with the theoretical results just given, we must multi-

U c/hU' = 0.848 which gives a = 0.076. This is not in bad

Ith the theoretical value of 0.0729.

-am has been written to solve the full set of coupled (uiuj> and

)ns, namely, Eqs. (46) and (112), and the result of a computa-

versus both dimensional time and nondimensional time

U'At = 1 h 4 0 hU (172)

Figure 5. It is seen that, although the growth rate of q is

*ed,the actual values of q are some 20% in error and remain so
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in the asymptotic region of the solution. This is not good, but we will

discuss a possible cause of this error after we have exhibited the agreement

between experimental results and all the parameters we have derived for the

exponential behavior of a homogeneous shear flow. These comparisons are

shown in the second, third and fourth columns of Table 1.

It is not difficult to show that other simpler, second-order models of

turbulent flow have exponential asymptotic solutions in the case of homo-

geneous shear flow. In Table 1, we also show the theoretical results for

the following models:

(a) A full closure in the case of the <uiuj> tensor and the single scale

equation

dA- 0.35 A <uv>U' + v'q (173)
dt 2

q

(b) A q - A model constructed from

- Kuv> u' - bq2  (174)
dt q A

dA - 0.35 < uv) U' + v'q (175)

q

together with the assumption that

<uv> = -0.35qAU' (176)

An examination of Table I is instructive. First of all, the tensor

scale model, with only two adjustable constants which were set from an exper-

iment on grid turbulence, seems to do the best job overall. It gives by far

the best prediction of asymptotic growth rate. The single scale model as

normally used (which has the added parameter c = 0.35) is pretty good on all

quantities except q/AU' and the growth rate, where it is very poor indeed.

The approximate q - A which has still another adjustable parameter does

least well for the parameters chosen, which are typical of these boundary-

layer-like flows.
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A most interesting result is found if we make the assumption that, as
indicated by the theoretical developments we have presented, the "constant"
in the simple scale equation should be zero and not equal to 0.35 for homo-
geneous shear flows. If we do assume c = 0 in this formulation and find
the asymptotic values of the basic parameters fcr homogeneous shear flow, we
obtain almost the same values of the parameters that were obtained using the
tensor scale equation. This is not surprising since the two formulations are
now very similar. However, it must be remembered that it was the tensor

-: scale equation which, when solved for homogeneous shear flow, showed that the
production term should disappear from the scale equation.

If one puts c = 0 in the q - A model we have concocted, the growth
rate and the Bradshaw number become too large (0.963 and 0.257, respectively)
while the parameter q/AU' drops to 1.284 (which is not a great improvement).
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3. CONCLUSIONS

In the previous sections, we have reviewed some of the characteristics

* of second-order modeling as it is currently used. One of the primary

criticisms of these methods has been that they take no account of the

structure that can be found in turbulent fields by modern instrumentation.

We have given here an outline of how, by the use of a simple definition of

. tensor scale, second-order-closure models might be extended to take account

of information on structure that can be gleaned from the two-point correla-

tion equations. The tensor scale used is certainly not ideal for this pur-

pose, but is was used not only because we are familiar with it but also

because it illustrates many features that will be exhibited by any other

definition of tensor scale.

We believe we have demonstrated two things in the results presented.

First, we believe we have shown that there really cannot be such a thing as

a universal scalar scale equation. Hence we believe that any steps taken

to improve second-order-closure methods in the future must include, among

* other things, the derivation(from appropriate models of the two-point corre-

lation tensor equations)multiple scales which will give a model that is

compatible with the structure of the turbulent eddies that exist in a given

mean flow. The method we have used here defines a tensor scale and uses a

moment expansion to look at some general features of the structure problem

that can be derived from a particular definition of tensor scale. The method

is a good approximation for homogeneous flows. It is less justifiable for

nonhomogeneous flows. However, we believe that, at the present time, it

bears a relation to a more complete formulation, much like eddy viscosity

methods bear to more complete formulations for calculating the Reynolds

stress correlation u!u!

Second, we believe that we have shown that the homogeneous shear

experiments are very powerful tools for the modeler. We believe that they

do indeed have asymptotic solutions that are exponential and that when the

asymptotic state is reached certain nondimensional parameters become constant

Since the asymptotic value of these parameters can be computed from a given
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model, the experimental results are an extremely useful tool for the develop-
ment of valid models. One reason the measured values of these parameters are

so useful is that they are independent of initial conditions and, in the past,
arguments over initial conditions have been used to cover a multitude of

modeling sins.
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4. DISCUSSION

There is more than one way to look at any physical problem. In the

field of turbulence research, it has become fashionable to define almost any

unsteady flow in the wake of an unaccelerated body as turbulence. A lot of

* these unsteady flows contain large-scale, coherent structures and, thus,

there has arisen a "large-scale eddy cult." The basic thesis of this group

is that turbulence should or (for the extremists) must be attacked by some

technique which identifies the turbulence with the interaction and decay of

such large-scale structures. A corollary of this position is that closure

methods do not or (for the extremists ) cannot address themselves specifi-

cally to large-scale eddies and, therefore, are not really anything but dull,

unphysical, and temporary methods for dealing with turbulent flows.

The authors of this paper do not believe that these people really

understand the nature of closure calculations at the present time. Not only

have closure methods demonstrated the existence of large-scale eddies in two

cases (the roll eddies of the marine planetary boundary layer and unsteauy

large eddies in the flow behind a rearward facing step 12), but these eddies

have been resolved in all their gory detail. This can be accomplished when

the closure equations are used in their elliptic, time-dependent form and

the grid spacing used is fine enough. Why is this so? It is because the

Euler equations (which govern the formulation and a great deal of the

behavior of large eddies) are contained in the time-dependent, elliptic

equations. Thus we submit that closure techniques not only can describe

large-scale eddies but must do so if the time-dependent, elliptic forms of

the equations are used and the grid spacing used is small enough to resolve

these eddies.

One further point. The Karman vortex wake is an unsteady flow assoc-

iated with an unaccelerated body. We do not prefer to think of it as a form

of structured turbulence (nor did those who first studied the phenomenon)

although, if one were a member of "the cult," this point of view might be

taken. The reason that we choose not to consider it as structured turbulence

is that there is ample evidence of its existence in laminar flow. From the
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closure point of view, the Karman wake is looked at as an unsteady flow
peculiar to the body that produces it. This unsteady flow interacts with
itself to decay either through laminar exchange and dissipation or through

turbulent exchange and dissipation, depending on the Reynolds number.

The research reported here is a description of our first attempts to

make a closure theory of turbulence that is compatible with the large-scale
structures that we must inevitably find when we run our closure codes in an

elliptic manner. The work reported is one completed step in this direction.

As noted in the text, we do not consider this work complete. We sincerely
regret that we had to terminate this work before our attempt to construct a
more general closure formulation could be completed. While we consider many

of the detailed large-eddy studies to be outstanding, we also believe that
elliptic, nonsteady, closure techniques will be the backbone of turbulence

computations that will be of use to the military for the next twenty years,
and that closure techniques that are compatible with this approach should
and will be pursued.
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